Journal of Organometallic Chemistry, 247 (1983) C24-C26 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

ENANTIOSELECTIVE TRANSFER HYDROGENATION OF KETONES CATALYZED BY RHODIUM(I) COMPLEXES OF CHIRAL SCHIFF BASES

GRAZIA ZASSINOVICH and FULVIO GRISONI Istituto di Chimica, Università di Trieste, Trieste (Italy) (Received February 7th, 1983)

Summary

The system formed in situ from $[RhEDCl]_2 + PPEI^*$ catalyses the asymmetric hydrogen transfer from propan-2-ol to some ketones and gives enantio-selectivities of up to 23%.

Transfer hydrogenation from a donor to a prochiral ketone catalyzed by optically active complexes of transition metals provides a method for asymmetric synthesis of alcohols. Only a few examples of this reaction have been described, and all involve the use of iridium(I) [1,2] or ruthenium(II) [3,4] complexes as catalysts.

We describe here initial results obtained in the hydrogen transfer from propan-2-ol to various ketones using the system formed in situ from $[RhECDI]_2$ and (-)-2-pyridinalphenylethylimine (PPEI) as catalyst in the presence of small amounts of KOH as cocatalyst. The initially formed system needs an activation to give the catalytically active species; this can be carried out by air oxidation of the isopropanol solutions of $[RhEDCl]_2 + PPEI$, as in the case of the compound $[Ir(COD)PPEI]^*ClO_4^-$ [1], or by refluxing the solutions in an argon stream.

In Table 1 are shown the results obtained in the reduction of acetophenone. It will be seen that the system shows a good catalytic activity and a moderately good enantioselectivity.

The reaction rate increases with increase in the [KOH]/[Rh] ratio, and correspondingly the optical yield remains almost constant. Furthermore both the activity and the optical induction depend on the [PPEI]/[Rh] ratio, showing a maximum when the [PPEI]/[Rh] ratio is 10. The activation method also affects the rate and the selectivity; both are lowered in the case of thermal activation.

^{*}ED = 1,5-hexadiene; PPEI = (-)-2-pyridinalphenylethylimine.

TABLE 1

[KOH]/[Rb]	[PPEI]/[Rh]	Time (min)	Conversion (%)	Optical yield (%) ^C (configuration)	
1.5	10	150	82	22 (R)	
3	10	50	81	23 (R)	
6	10	30	82	23 (R)	
6 ^d	10	60	82	13 (R)	
6	5	60	81	16 (R)	
6	15	130	82	20 (R)	

REDUCTION OF ACETOPHENONE WITH PROPAN-2-OL CATALYZED BY [RhEDC1]₂ a + (--)PPEI b (Reaction conditions: [Rh] 3.2×10^{-4} M; [sub]/[Rh] = 500; solvent = propan-2-ol (250 ml); T 83°C.)

^a Activation by oxidation. ^b Derived from condensation of pyridine-2-aldehyde and (R)(+)-1-phenylethylamine. ^c Optical yields are calculated from the specific rotation of pure enantiomer: 1-phenylethanol $[\alpha]_{D}^{25} = 44.2$ (neat) [5]. ^d Thermal activation.

The structure of the substrate employed has a significant influence on the rate and on the optical purity of the alcohol obtained. As can be seen from Table 2, increase in steric hindrance causes a decrease in the rate and in the enantiomeric excess.

TABLE 2

REDUCTION OF SOME PROCHIRAL KETONES WITH PROPAN-2-OL CATALYZED BY [RhEDCl]₂ ^d + (--)PPEI

(Reaction conditions: [Rh] $3.2 \times 10^{-4} M$; [KOH]/[Rh] 6; [PPEI]/[Rh] = 10; [sub]/[Rh] = 500; solvent = propan-2-ol (250 ml); T 83°C.)

Substrate	Time (min)	Conversion (%)	Optical yield (%) ^b (configuration)
C,H,COCH,	30	82	23 (R)
C,H,COCH,CH,	75	79	20 (R)
C ₆ H ₅ CO(CH ₂) ₂ CH ₃	180	79	19 (R)
C ₆ H ₃ COCH(CH ₃) ₂	460	78	9 (R)

^a Activation by oxidation. ^b Optical yields are calculated from the specific rotation of pure enantiomers: 1-phenylpropanol $[\alpha]_{D}^{22} = 28.1$ (neat) [6], 1-phenylbutanol $[\alpha]_{546}^{40} = 36.6$ (neat) [7], 2-methyl-1-phenyl-1-propanol $[\alpha]_{D}^{20} = 47.7$ (c 6.8 diethyl ether) [8].

The results indicate that it would be of interest to make a more detailed investigation involving variation of the nature of the hydrogen donor, the chelating ligand and the substrate with special attention being given to the α -(N,N-dialkylamino)alkyl aryl ketones [9].

Acknowledgements. We thank the Donegani S.p.A. and C.N.R. for financial support.

References

¹ G. Zassinovich, C. Del Bianco and G. Mestroni, J. Organomet. Chem., 222 (1981) 323.

² R. Spogliarich, G. Zassinovich, J. Kaspar and M. Graziani, J. Mol. Catal., 16 (1982) 359.

- met. Chem., 198 (1980) 73. 4 M. Bianchi, U. Matteoli, P. Frediani, G. Menchi and F. Piacenti, J. Organomet. Chem., 236 (1982) 375.
- 5 A.J.H. Houssa and J. Kenyon, J. Chem. Soc., (1930) 2260.
- 6 R.H. Pickard and J. Kenyon, J. Chem. Soc., 99 (1911) 45.
- Landolt-Börnstein, Vol. II 18, Springer-Verlag, Berlin, 1962, p. 680.
 D.J. Cram and J.E. McCarty, J. Am. Chem. Soc., 79 (1957) 2866.
- 9 S. Toros, L. Kollar, B. Heil and L. Marko, J. Organomet. Chem., 232 (1982) C17.